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Abstract— In modern highly dynamic robot manipulation,
collisions between a robot and objects may be intentionally
executed to improve performance. To distinguish between
these deliberate contacts and accidental collisions beyond the
limit of state-of-the-art human-robot interactions, new sensing
approaches are required. This work seeks an easy-to-implement
and real-time capable solution to detect the identity of the
impacted material. We developed an inertial measurement unit
(IMU) based setup that records vibration signals occurring
after collisions. Furthermore, a data-set was generated in
an unsupervised learning manner using the measurements of
collision experiments with several materials commonly used in
realistic applications. The data-set was used to train an artificial
neural network to classify the type of material involved. Our
results show that the neural net detects collisions and a
detailed distinction between materials is achieved, even with
estimating different human body parts. The unsupervised data-
set generation allows for a simple integration of new classes,
which provides broader applicability of our approach. As the
calculations are running faster than the control cycle of the
robot, the output of our classifier can be used in real-time to
decide about the robots reaction behavior.

I. INTRODUCTION

Traditionally collisions between a robot and its environ-
ment were strictly avoided to prevent damages to the environ-
ment or the robot itself. However, in recent highly dynamic
robot manipulation settings, collisions between robots and
objects are encouraged in order to speed-up manipulation.
Therefore, new sensing modalities to evaluate the process
status are needed. In this work, we are specifically interested
in the vibrations occurring after an impact between a robot
and an object, similarly to the well-known modal analysis in
mechanics, but coping with much more disturbances due to
dynamic robot motion and contact richness. So far, similar
principles, based on proprioceptive sensors, are used in phys-
ical human-robot interaction (pHRI) to evaluate the human’s
intention, like intentionally grasping and guiding the robot, or
accidentally being hit by the robot [1]. However, even with
recent tactile robots, only moderate frequency components

∗ The authors contributed equally to this paper as first authors.
All authors are with the Technical University of Munich (TUM), Munich

Institute of Robotics and Machine Intelligence (MIRMI), Chair of Robotics
and System Intelligence (RSI), Germany, carlos.valle@tum.de .

We greatly acknowledge the financial support of Vodafone, the fund-
ing of the EU Horizon 2020 projects I.AM. (no. 871899) and Darko
(no. 101017274), the Lighthouse Initiative KI.FABRIK Bayern by StMWi
Bayern (KI.FABRIK Bayern Phase 1: Aufbau Infrastruktur and KI.Fabrik
Bayern Forschungs- und Entwicklungsprojekt, grant no. DIK0249), the
Lighthouse Initiative Geriatronics by StMWi Bayern (Project X, grant no.
IUK-1807-0007// IUK582/001), and the LongLeif GaPa gGmbH (Project
Y). Please note that S. Haddadin has a potential conflict of interest as
shareholder of Franka Emika GmbH.

Fig. 1. Overview of the proposed concept. We impacted various types
of materials, including also a human body parts surrogate with a robot
and recorded the vibration measurements of an inertial measurement unit
(IMU) at the end-effector. With the frequency information an artificial
neural network (ANN) is trained offline (blue area) to classify the impacted
material. This ANN is then used in a real-time pipeline for impact evaluation
(orange area).

can be measured due to sensor bandwidth limitations to a
sampling rate of 1 kHz.

We aim for extending these approaches by means of the
robot’s intention. An illustrative example would be that the
robot should put an item into its packaging box. It could
happen that the robot hits the soft packaging material due to
small positioning inaccuracies, which requires a re-try at a
slightly different pose. It might also happen that the box is
closed and hence the hard lid of the box is hit, which means
it firstly needs to be opened. Or in a pHRI scenario the robot
might even hit a human arm, which requires an emergency
stop. All these cases may happen at the same robot pose and
may in principle lead to the same absolute external force, so
no distinction by state-of-the-art methods would be possible.
In spite of that, all cases do differ in the vibration of the
end-effector after the collision, due to the different impacted
materials.

In this work, we propose a novel system to classify the im-
pacted material by a robot in real-time; a schematic is shown
in Fig. 1. Our approach consists of an inertial measurement
unit (IMU) integrated into the end-effector, which measures
vibrations with a high bandwidth. This generates features
used by a small neural network that is trained to classify
several types of materials from these vibration signals. Our
proposed offline training pipeline can generate a training
data-set from raw collision experiments with different materi-
als in an unsupervised manner, allowing for a more flexible
applicability of the method with minimal human labeling
requirements. The material detection is achieved within the



real-time control loop of the robot, with a simple setup, not
requiring expensive specialized equipment or software.

In Sec. II we discuss related works that influenced our
approach. The data-set generation process and the used
methods are presented in Sec. III. In Sec. IV, we outline the
hardware architecture. In Sec. V, we evaluate and discuss
our performance in different experiments. Finally, Sec. VI
concludes the paper.

II. RELATED WORKS

The proprioceptive joint torque sensors are often used for
evaluating impacts, especially in pHRI scenarios with tactile
serial kinematic robots [1]–[7]. An overview of methods,
like e. g. the momentum observer for estimating the external
torques, are given in [8]. Among these references many use
artificial neuronal network (ANN) methods to classify the
impacts, except [2] and [3], where they purely use threshold
based approaches. Furthermore, the frequency content of the
input signals play a major role for classification [2], [3],
[7]. However, due to bandwidth limitations of the build-
in sensors and estimates, it is not possible to investigate
impacted material properties based on these methods. On
the other hand, detection of material properties by sensing
vibrations of impacts is commonly used in mechanics, where
it is called modal or vibration analysis. Here, specialized,
hence expensive, equipment is used and commonly, no ad-
ditional disturbances, due to e. g. motors, are present. Modal
analysis has already been combined with ANN for material
classification in [9]. The combination of modal analysis and
ANN was already transferred to robotics in [10], whereas
the robot was again stand-still to reduce motor disturbances
in these experiments. Additionally, the used classification
approach focused on offline generated frequency character-
istics of the acquired signals which prohibits analysis in
real-time. Whereas, Fast Fourier Transformation (FFT) is in-
general of major importance for vibration analysis, hence
we use the real-time capable FFT provided in [11]. The
similarity between vibration and sound can also be used
to evaluate impacts on robots [12], [13], but requiring to
attach microphones on the robot which is not suitable to
capture impacts with soft materials that do not generate
sound. Moreover, capacitive sensors can be used for con-
tactless material detection [14]. However, this can only be
achieved with a limited field of view. Additionally, with high-
sensitivity haptic force sensors [15] or tactile skins [16] it is
also possible to draw conclusions about touched materials,
by applying similar vibration analysis and ANN methods.
Instead of these highly specialized systems we may use a
standard Micro-Electro-Mechanical System (MEMS) IMU.
This is already often used in robotics, not only for impact
detection [10], [17]–[19], but also for improving robot state
measurements [20], localizing impacts on the robot surface
[10], [21] or estimating impact surface orientation [22].

III. METHODOLOGY

Our approach consists of a neural network architecture
trained to classify several types of materials from collision

TABLE I
EXPERIMENTAL PARAMETERS

Material foam, cardboard box, wood, metal, plastic box, hand
(PRMS), lower arm (PRMS), upper arm (PRMS)

Location C2, C3
Direction [°] 90, 75, 60, 45, 30
Velocity [m/s] 0.10, 0.15, 0.20, 0.25

Fig. 2. Materials and surrogate system (PRMS) configured for lower arm.

experiments. We extract input features from the acceleration
readings that allow the classifier to distinguish materials in
real-time. This allows the possible use of specific reactive
behaviours. In this section we show the experimental pro-
tocol for generating the training data in Sec. III-A. Further-
more, we describe in the following sections the step-by-step
processing of this experimental data from raw acceleration
measurements to classified materials.

A. Experimental protocol

The experiment starts with the robot in a static pose. It ac-
celerates until a constant (moderate) velocity is reached and
moves further in a straight Cartesian line until it collides with
a flat surface in a predefined location. The robot then returns
to the initial static position. We performed experiments with
nearly all combinations of impact parameters given in Tab. I,
whereas each combination was repeated 20 times, making
6000 impacts. Only the velocity of 0.25m/s was not used
for wood and metal, to prevent damage of the robot. Photos
of the materials are provided in Fig. 2. The experiments
with human extremities were conducted with the Pilz Robot
Measurement System (PRMS)1. This is a test device to verify
safety for humans in pHRI scenarios according to ISO 15066
[23]. The PRMS can be configured with several stiffness
and damping elements to behave like different human body
parts in constrained contacts, following the average values
given in ISO 15066 [23]. The impact locations are chosen
according to ISO 9283 [24] as C2 = [498, 0, 252]Tmm and
C3 = [498, 0, 452]Tmm for a 400mm cube, see Fig. 3. The
impact angle for the different directions is measured with
respect to the impacted surface, whereas this was always
parallel to the (x-y)-plane of the robot base.

B. Pre-processing

We recorded 3D acceleration measurements Iameas. for
several variations of possible collision scenarios, which are
measured in the sensors own coordinate frame I. As ac-
celerometers measure also the static gravitational accelera-
tion of earth, it is important for the features used in the

1https://www.pilz.com/de-DE/produkte/robotik/
prms/prms



Fig. 3. The impact locations and the maximum and minimum impact
directions. The IMU is attached between the flange and the metal ball as
end-effector.

classifier to have this effect removed. One way of achieving
this could be to apply high-pass filtering of the data to
remove the static offset. However, such a filter might also
influence low-frequency components of collisions, in which
we are specifically interested for softer materials. Instead of
using the high pass filter, we can subtract the base gravity
vector Og from the measurements with

Iacomp. =
Iameas. − (OTE

ETI)
91 Og , (1)

given the forward kinematics of the robot OTE and the
location of the accelerometer relative to the end-effector of
the robot ETI , whereas Iacomp. denotes the compensated
acceleration vector, see Fig. 4. Since the collision impact
direction can interfere on which dimension of the 3D ac-
celerometer the impact can be observed, we compute the
magnitude a of the vector Iacomp. by

a =
√
a2x,comp. + a2y,comp. + a2z,comp. , (2)

decoupling this effect from our measurements.
The input features used by the classifier are extracted from

a moving window of past measurements of the accelerometer.
Since it operates at 10 kHz, we experimented with window
sizes for past samples from the interval of 0.1 s to 1 s. We
selected the best trade-off between performance and com-
putation time which was 4096 samples (0.4096 s). Window
sizes that are powers of 2 (4096 = 212) are computationally
more efficient, speeding up our features calculation [11].

Fig. 4. Exemplary gravity compensated accelerometer data for the x-,
y-, and z-axis. The same experiment is also shown in Figs. 5 and 9 for
comparison.

Fig. 5. Input accelerometer data for the ANN, where the yellow area
denotes a time-window classified as with impact, and the gray window is a
”no collision” sample.

Furthermore, typical vibrations after impacts show also a
similar time window, see the yellow area in Fig. 5. We
compute our features at every 10 steps, which means our
classifier operates at 1 kHz. This is the same frequency that
the robot control loop operates in, allowing the system to
react as soon as possible for a given collision scenario.
Taking into consideration that each experiment lasts for
around 3 s, the average total number of windows samples
is 2600. The total number of sampled windows for all tested
experiment variations is roughly 15.6 million windows to be
classified.

At every sampled window we compute the FFT, with
10 kHz sampling rate, and extract the frequency amplitude
spectrum of it. We chose to use the amplitudes until 512Hz
as input for our classifier, as [9] reported a similar range.
Similarly, we also observe that frequencies above this thresh-
old are consistently smaller in the samples used for training.
As considering also higher frequencies would increase the
amount of computations required by the algorithm, we
choose to limit the regarded frequencies to 512Hz, which
can also be seen as low-pass filtering.

1) Data-set generation: We opt to use supervised learn-
ing to train the classifier, therefore requiring corresponding
output labels for every input sample. For every experiment
recorded for training it was known a priori the corresponding
material that was collided, we therefore needed to automat-
ically distinguish samples corresponding to the collision pe-
riod from the ones that did not. For this task, we applied the
K-means clustering method [25], which aggregates samples
by similarity in clusters. We chose the number of cluster
based on the number of possible motion states described in



Sec. III-A (static, acceleration, constant velocity, collision,
retraction and deceleration), more precisely 4 times that
number (24 clusters). This multiplier is necessary because the
transition between each state of the experiment is not instan-
taneous, therefore additional clusters to separate transitions
samples are necessary. The exact multiplier for the clusters
number needs to be bigger than 3 (to account for the state and
the transition period from and into another state) and also low
enough to avoid single sample clusters, which would denote
over-fit. To distinguish samples from the collision period
we simply accounted the average acceleration magnitude
of each cluster and the one with the highest was used to
draw samples for the collision and labeled accordingly to
the material involved in the experiment and an equivalent
number of samples of the other cluster were chosen randomly
as examples of non collision periods, see also Fig. 5.

C. Classification

The selection of the classification method took into con-
sideration scalability of the method to more samples and
more classes (for future expansion of the number of classes,
for example) and computation efficiency. We opted to use a
fully connected feed-forward neural network since it is fast
to compute (compared to more complex architectures like
using LSTMs [26]) and, potentially, scales well for more
classes (unlike SVM-based approaches [27]). We used the
data-set to train a fully connected neural network with a
single hidden layer with 25 neurons with Softplus activation
function and bias. The output layer used a Softmax activation
function with bias and outputs a one-hot representation of
the corresponding class. The depth and number of neu-
rons was empirically selected for minimizing the number
of calculations required without reducing performance and
might be subject to change depending on different classi-
fication applications. It is important to highlight that more
complex neural network architectures could be used but in
early experiments we empirically did not observe accuracy
improvements to justify the additional computational cost. As
an example, our fully connected architecture already consists
of approximately 13000 trainable weights (512 inputs, 25
hidden neurons and 9 classses), which denotes clearly that
any growth on complexity can vastly increase the number
of calculation needed for a real-time inference, therefore,
limiting the hardware capable of handling it.

1) Training: As each experiment combination was re-
peated 20 times, 14 would be used for training the classifier,
3 for validation and 3 for testing. We used gradient descent
on the training data and used the validation data as early
stop metric. The network was trained via stochastic gradient
descent using Adam optimizer [28] with β1 = 0.9, β2 =
0.999, and initial learning rate of 10−4. The early stop was
200 steps. Training was done in Python 3.8.12 using the
Pytorch2 [29] library version 1.10.1 (under BSD license).
Training was optimized for GPU and conducted in a Nvidia
RTX 2080ti.

2https://pytorch.org/

2) Usage: The trained neural network weights, biases
and activation functions were then transcribed in C++ for
real-time experiments. For each sampled window we have
to calculate the FFT, its frequency amplitude spectrum,
and multiply the corresponding frequencies for the neural
network weights, biases and activation functions. This results
in an estimate of the impacted material, with which a proper
robot reaction strategy can be started if needed. However,
due to not including the transition phases into the neural
net, we observe a high number of wrong classifications at
the beginning and end of a detection phase. As the class is
certain at the end of a classification phase, we introduced to
prolong the output of the class for 50ms, to avoid further
misclassifications.

IV. EXPERIMENTAL SETUP

All experiments were done with a Franka Emika Robot
with a metal sphere of 50mm diameter attached to the end-
effector. The robot was commanded Cartesian velocity inputs
via the Franka Control Interface (FCI). All robot settings
were set to default values, except the collision detection
thresholds which are set to [20, 20, 18, 18, 16, 14, 12]Nm for
the joints and [20N, 20N, 20N, 25Nm, 25Nm, 25Nm] for the
Cartesian impact settings.

The acceleration data was acquired using an on-board
TDK ICM-42688-P MEMS IMU sensor, which was rigidly
attached close to the flange. The full-scale range and the
Output Data Rate (ODR) frequency of the sensor were set
to ±16 g and 32 kHz, respectively. All internal filters of the
IMU were deactivated. In order to extract the sensor data, a
real-time Data Acquisition System (DAQ) was implemented
using a Microchip EVB-LAN9252-SAM D51 board and a
custom-made Printed Circuit Board (PCB) shield for connec-
tivity. The on-board SAMD51 micro controller handles the
online configuration of sensor parameters via a bidirectional
SPI bus and acquires the data of up to four sensors and
six channels (three for the accelerometer and three for the
gyroscope) per sensor at 10 kS/s/ch. The data is reformatted
from 16-bit signed integers to single-precision floating point
SI values and synchronously re-transmitted to the on-board
LAN9252 EtherCAT slave controller via the QSPI bus at the
same sample rate. The data is then send on request of the
EtherCAT Master. Simple Open EtherCAT Master (SOEM)
software3 was used to manage the EtherCAT bus, which was
set to a bus frequency of 10 kHz. To further process the data
mathematically the Eigen C++ library [30] was used and for
real-time FFT we used FFTw [11] with default settings. The
PC was a generic office PC, with an Intel i5-9400 processor,
8GB memory, and a Realtek RTL8168 network chip. A
sketch of the setup is depicted in Fig. 6.

V. RESULTS AND DISCUSSION

The final precision of the neural net approach is evaluated
offline based on parts of the prerecorded data that was not
used in training (test data set). The evaluation over these

3https://rt-labs.com/product/soem/



Fig. 6. Hardware (blue) and software (orange) setup.
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Fig. 7. Test data confusion matrix. The classes are presented in the order
of Tab. I, whereas the ”no collision” class is added on top.

900 impacts results in the lowest precision of 93.71% for
cardboard, see Fig. 8. We further also report the precision in
training, so with already known data, and on the validation
data set. The lowest class precision observed in the training
data was 99.1% for the ”no collision” class and 96.31% for
foam in the validation set. Furthermore, we provide in Fig. 7
the confusion matrix of the test data set. The classes are
presented in the order of Tab. I, whereas the ”no collision”
class is added on top. Even though, these evaluations were
done on offline data, they show still the good capabilities of
the approach, as the input data is recorded on the real setup.
In the following we further elaborate on certain aspects of
the application of the approach in real world scenarios.

In Fig. 9, we see the performance of the classifier in a
real-time experiment using one of the trained variations of
the experiment. It can be observed that the classification
is mostly correctly done. It is also possible to observe a

Fig. 8. The precision of the approach on different data sets. The lowest
precision on the unknown test data set defines the final result, which is
93.71% for cardboard. We also show for comparison the results of training
(known data set) and validation.

detection
window

Fig. 9. Class prediction in real-time experiment with trained parameter
variation. The blue section corresponds to correct material detected, red
denotes wrong classification, whereas for the beginning of the confidence
phase the marked detection window is used. Here, the rather soft plastic
box was impacted with 0.2m/s and 75°.

delay from the impact start until detection. This is because
a certain number of samples inside of the sampling window
is required. This minimum number of samples is inversely
proportional to the resonance frequency of the material the
robot is colliding with. Therefore, it is expected that a
collision with metal (higher stiffness, hence higher resonance
frequency) requires less samples to be detected than the
one with plastic. Hence, in an example collision with metal,
which can be seen in Fig. 10, the approach shows much faster
recognition with higher vibration frequency. Furthermore,
especially in Fig. 9 it can be seen that misclassifications
happen mainly at the start of a classification period. This
behavior is explained by the fact that the transition phases,
were excluded for training the ANN to keep its structure
simple.

We conducted further experiments with non-trained vari-
ations of the setup. Figure 11 shows the performance of the
classifier with an impact in the Oy-axis, instead of the Oz-
axis used in training. We can observe that the performance
remains good. This shows that the magnitude of the 3D
acceleration vector as input to the algorithm improves the
applicability, as it makes the method direction independent,
without requiring further training data. Also tests with ve-
locities outside the training data range were conducted, see
Fig. 12. However, for lower velocities the vibrations vanish,



Fig. 10. The higher the frequency a material resonates at the less samples
are required to detect its collision. The whole collision process is also a
lot faster (see timescale). This graph shows a rather rigid metal impact at
0.2m/s and 75°.

Fig. 11. Direction extrapolation performance. This collision with foam
happened while the robot was moving in y-direction, whereas also the
collision location was shifted 80mm in y-direction of the base. The velocity
was set to 0.2m/s.

which is expected from contact mechanics, but still this
constitutes a limitation for our algorithm to velocities above
at least 0.1m/s. Nevertheless, at higher velocity collision
scenarios the classifier is able to successfully detect the col-
lisions. Only at almost twice the maximum training collision
speed the performance starts to decrease.

An evaluation of the calculation time over 64260 cycles
for the FFT and the ANN in C++, showed a mean cycle
time of 57.4 ± 7.4 µs, with a maximum of 439.9 µs. As
all these values are below the cycle time for the robot
controller (1ms) it proves that our algorithm may run in
a real-time loop, without necessitating extensive hardware.
The experiments denote that the method is robust enough
to work with real sensory measures and can correctly detect
trained classes in real-time. Furthermore, the approach shows
large potential due to its simplicity, low-cost, speed, and
application flexibility which motivates further investigations
on the topic.

VI. CONCLUSIONS

We presented a real-time collision detection and clas-
sification method that is capable of generating a training
data-set in an unsupervised manner from generally labelled
experimental collision data. The data is then used to train
a small neural network that can predict the set of classes
predefined in the experiments. The approach is robust and
material agnostic and has the potential extension to many
different use cases. Our experiments showed that the method
successfully works in real-world real-time experiments and is
also capable of extrapolation outside the training set of exper-
iments. Future work intends to investigate on techniques to

Fig. 12. Velocity extrapolation performance. We recorded impacts with the
PRMS configured as hand and impacted with 0.05m/s to 0.45m/s with
90°. For lower velocities the performance decreases drastically, whereas
for 0.05m/s no classification is possible, as the collision is not even
recognized. For higher velocities the classification shows good results.

improve classification robustness, specially for extrapolation
scenarios and early collision detection refinements.
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